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Abstract

Engineering advances have enabled the simultaneous recording of large numbers
of neurons across multiple channels. Determining which spikes are from which
neurons (spike sorting) is a critical first step in analyzing these electrophysiological
data. However, the most widely used methods are primarily semi-automatic and
not suitable for a large number of recording sites. Most existing spike sorting
algorithms are unsupervised or semi-supervised in nature, while little has been
explored with a supervised approach. We propose a new fully automated and super-
vised spike sorting algorithm composed of deep similarity learning and hierarchical
clustering. First, a convolutional Siamese network is trained on the simulated
data with ground truth labels to learn the pairwise similarity of spikes, and then
a similarity matrix is constructed and clustered with hierarchical clustering with
stopping criteria to determine the number of clusters. Furthermore, once the deep
Siamese network is trained, we can fine-tune the fully connected layers with a small
labeled dataset and transfer the learned model to other cell types and recording
devices. With the labeled information, our proposed method outperforms other
state-of-the-art algorithms on both simulated and real neuronal data in terms of the
number of hits, misses, and false positive neurons.

1 Introduction

With recent advances in electrode probe development [1, 2, 3, 4, 5, 6, 7] , simultaneous recordings
across a large number of channels and recording sites are becoming a primary tool for studying the
complex network ensembles and dynamics in the brain. However these extracellular micro-electrodes
pick up action potentials from several nearby cells, giving rise to the problem of "spike sorting" -
determining which action potential or spike belongs to which neuron. Each neuron has a unique
characteristic spike shape determined by the dendritic morphology, the density and expression of
ionic channels of the cell, the spatial location of the electrode relative to the neuron, and the resistivity
of the extracellular medium [8]. Spike sorting is the task determining the number of neurons in the
multiunit recording and assigning the time of occurrence of each spike to its firing neurons [9]. This
is usually considered as an (unsupervised) problem in cluster analysis, and has been used for both in
vivo and in vitro studies, along with applications in brain-computer interfaces such as development
for new prosthetic control devices and neurorehabilitation techniques [10].

1.1 Related Work

Spike sorting algorithms have been extensively studied. Some commonly used methods are principal
component analysis (PCA) [11], wavelet decomposition [12, 13], Bayesian approaches with Gaussian
models [14, 15, 16] and Kalman filter based models [17]. The recent progress in automated spike
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Figure 1: Illustration of the sorting pipeline.

sorting algorithms includes diffusion maps [18], t-distributed stochastic neighbor embedding (t-SNE)
[19], and heuristic improvement on semi-automatic methods [20, 21].

1.2 New Supervised Sorting Pipeline

In the studies mentioned above, only [19] uses simulated data for parameter optimization, while other
methods are fully unsupervised, where the simulated data were only used for performance evaluation.
Here, we present a new supervised automatic spike sorting pipeline that takes advantages of the
labeled information in simulated or expert confirmed real data. The pipeline for our algorithm is
illustrated in Figure 1. First, we use the normal spike detection method described in section 2.1 to
extract spikes from the raw data and pick several spikes as the templates for simulation. Then we
simulate the recording data using the method in section 2.2 and train the deep convolutional Siamese
network shown in section 2.3. Lastly, we compute the similarity matrix for target spikes and feed the
matrix to a hierarchical clustering algorithm for sorting. Once the general model with simulated data
in a given cell type and recording device is trained, we can fine-tune the fully connected layers with a
small labeled dataset and transfer the learned model to other cell types and recording devices. Hence
our method can be modified efficiently with a small amount of labeled data for new datasets.

2 Materials and Methods

2.1 Filtering and Spike Detection

General spike sorting pipelines include filtering, spike detection, feature extraction, and clustering.
The first step is to apply a bandpass filter on the recorded data to remove low-frequency background
activity and high-frequency noise that could be due to non-neural sources. The bandpass filter range
for this study was between 300 Hz and 3,000 Hz for spike detection and 300 Hz to 1,000 Hz for
spike snipping. The second step, spike detection, is to snip putative spikes from filtered recording.
We employed the spike detection method proposed in [13]. The detection threshold is set to be the
standard deviation σn of the background noise of filtered data, which is assumed to follow a Gaussian
distribution and thus estimated by the median absolute deviation. Spikes are snipped with length 2 ms
at the location where the absolute value of (filtered data) exceeds five times σn. That is, Thr = 5σn

and σn = median
{
|x|

0.6745

}
where x is the band-passed signal. As in [13], we used the standard

deviation of x to estimate σn.

2.2 Data Simulation

We followed the data simulation approach in [22]. One simulated recording consists of three
components: background activity, multiunit activity, and single unit activity. Unlike in [22] where
templates were obtained by averaging previously sorted putative spikes, we simply picked those
presumably not from the same neurons as the templates. This is because we want to start from scratch
where we possibly do not have sorted datasets similar to those of our interest in sorting.

The target sampling rate was 30,000 Hz, and the templates were from data used in [23], recorded with
a Utah Array in the medial temporal lobe in four human epilepsy subjects from the Massachusetts
General Hospital. We identified 488 templates in total, where the first 70% were used for training
and the rest were split evenly between test and validation. The background activity was generated by
superimposing millions of units from all 488 templates and then normalizing to have a mean 0 and
standard deviation 1. The multiunit activity is generated from 20 to 30 randomly chosen templates,
each of which has an amplitude ranging from 0.5 to 1.5 times the detection threshold. The multiunit
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Figure 2: Siamese network architecture and sample inputs. (A) Siamese network architecture: The
network has two copies of the same underlying network f(x) while processing different inputX1,X2.
The difference of outputs from each copy is taken and passed to the last layer with Wend and sigmoid
function that outputs the probability that two spikes belong to the same neuron. (B-F) Sample input
features: (B) Filtered spike waveform. (C) First order derivative of (B). (D) Second order derivative
of (B). (E) Unfiltered waveform of (B). (F) First order derivative of (E).

activity follows a Poisson process with mean firing rate 20 Hz. The single unit activity is generated
by selecting N templates different from those used for multiunit activity, with each assigned an
amplitude ranging from 1.5 to 4 times the detection threshold. Each unit in the single unit activity
follows a Poisson process with a firing rate ranging from 0.5 to 5 Hz.

2.3 Convolutional Siamese Network

Siamese networks can learn pairwise similarity and the contrastive loss function is usually used to
minimize the distance for samples within the same group and maximize the distance otherwise [24].
For this study, we employed the discriminative model for Siamese networks proposed in [25]. The
architecture of the Siamese network used for this study is given in Figure 2A. A fully connected layer
before the output is added as indicated by the parameter Wend. The inputs X1, X2 to the network are
two spikes (along with their features); if their labels are the same y = 1 else y = 0.

2.3.1 Loss Function

Instead of contrastive loss, we used pairwise loss in order to push the outputs for positive and negative
pairs to two extreme sides of the distributions

L(p+, p−) = max (0, δ − (p+ − p−)) (1)

where p+ is output probability for positive pair from the network, p− is the output probability for
negative pair from the network, and δ is the margin between the two distributions.

Different choices of δ in the training stage affect the threshold ϑ to use later in the clustering stage.
Though smaller δ makes training faster and produces a slightly higher testing accuracy towards the
end, it could be painful to find the optimal ϑ used for classifying whether a given pair is positive or
negative. Hence, all results reported here are trained with δ = 0.5, with which that testing accuracy
of the classifier is stable for ϑ ∈ [0.4, 0.75] (See Table 1 in Suppl. Materials for the effect of δ on ϑ).

2.3.2 Convolutional Networks

The “sister networks” of Siamese networks used for this study are two later-fused copies of convolu-
tional neural networks with identical architectures but different weights. One takes the raw spikes
(with length 2.5 ms) along with their first order derivatives, and the other takes the filtered spikes
along with their first and second order derivatives. Derivatives are treated as different channels of
the same input and are provided as input features as it has been shown that first and second order

3



derivatives can be used to differentiate similar units [26, 27]. Indeed we found that removing the
derivative features results in a drop in the classification accuracy by nearly 5%.

The outputs from the convolutional layers of raw and filtered spikes are then concatenated, along with
the first 14 principal components of both raw and filtered spikes. Sample inputs are given in Figure
2B-2E, and the architecture of the convolutional network used is given in Fig. 1 in Suppl. Materials.

2.3.3 Training Dataset and Algorithm

The training dataset was simulated with the method in section 2.2 with 340 templates chosen for
the training set (80% out of the total 488 templates). We only used the single unit activity for each
template, and we set a balanced number of spikes for each template to be around 3,000, and therefore
the final training set consists of 1,2205,656 spikes in total. However, the set of positive and negative
pairs are highly imbalanced, and hence, we used a balanced sampler to sample both positive and
negative pairs with a chance of 50%.

The network was trained through mini-batch stochastic gradient descent with adaptive learning rate.
In particular, Adabound [28] with initial learning rate 0.001, final learning rate 0.1, batch size 128,
and weight decay parameter (equivalent to the L2 regularization factor) 0.0001 was used. Training
was stopped after the validation loss had plateaued for at least 5 epochs.

2.3.4 Transfer Learning

The above training set is enormous, which poses a severe obstacle in practical use if the trained
model was not able to generalize to other datasets with different cell types and recording devices.
However, we are able to fine-tune this heavily trained model with a small labeled dataset to transfer
the performance to other cell types and recording devices. We specifically tested this transfer learning
scheme on one simulated dataset and one real dataset.

We test our algorithm with the simulated dataset presented in [29] 1. It consists of 95 channels in total,
with the number of units in each channel ranging from 2 to 20. The templates used for these simulated
datasets are 594 different averaged spike waveforms from recordings of monkey basal ganglia and
neocortex, which are different from the cell type used to train the original model (recorded in the
human temporal lobe). Here we picked the first channel with only 16 units and 9,612 spikes detected
for training. This is considerably smaller than the one used for training the general model.

The real dataset used was from https://crcns.org/data-sets/hc/hc-1/about, which was simultaneous
intracellular and extracellular recordings in the hippocampus of rats [30]. Extracellular recordings
were processed partly with wire tetrodes for about half of the data set, while the remaining part was
done with six-site linear silicon probes. This is drastically different from our original setting, as both
the recording device and species are completely different. The labeling was done by snipping the
spikes around the time window where the intracellular recording indicates that the neuron has fired.
Since each dataset has only one intracellularly recorded unit, we picked four datasets with a total
of 4,621 spikes in the training set (See Table 2 in Suppl. Materials for details). Note that since the
general model was trained on the single-channel data, the network was not able to take more than one
channel for its input, and therefore we had to get the corresponding spikes from all recorded channels
and regard them as from a single channel in the training and testing procedure.

2.4 Hierarchical Clustering

For the clustering algorithm, we employed an elementary variant of average-linkage hierarchical
clustering [31] with stopping criteria. After we finish training the Siamese network, we compute the
probability that a given pair of spikes were fired by the same neuron for all pairs in the input spikes.
We then perform average-linkage clustering on the similarity matrix. In the original agglomerative
clustering algorithms, the clustering tree is cut at different levels to obtain different numbers of
clusters from which we pick the desired one. Here, we used a stopping criterion based on threshold,
ϑ, (also used in the classifier) to decide whether a given pair is positive or negative. If the output from
the Siamese network p > ϑ, we classify this pair as positive, otherwise negative. This ϑ can also be
used for clustering as additional information to get the number of clusters. If the pairwise similarity
for all clusters in the clustering process is less than ϑ, we stop merging.

1Available at https://www135.lamp.le.ac.uk/hgr3/
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Table 1: Performance of the model and algorithm under different conditions. Five models were
trained with different initial weights, and Mean (SD) are shown for each measure. Definitions of
"F1-precision" and "F1-recall" are in section 2.6, and the testing accuracy was assessed with the
optimal ϑ by cross-validation on validation sets, sampled from balanced pairs in the dataset. S-10
dataset is one of our own simulated recordings with 10 neurons, and C-3 is the third simulated
recordings from [29] with 12 neurons. (1) δ = 0.5 for training, no parallelization in clustering. (2)
δ = 0.1 for training, no parallelization in clustering. (3) Same model as in (1), with parallelization in
clustering (K = 5). (4) no fine-tuning on different distribution. (5) model fine-tuned (section 2.3.4.)

conditions datasets testing acc (%) # of hits # of missed # of FP F1-precision (%) F1-recall (%)

default S-10 84.21± 0.23 9± 0 1± 0 0± 0 69.22± 0.65 62.46± 0.53

δ = 0.1 S-10 85.87± 0.24 S/A S/A S/A 69.50± 0.60 62.62± 0.68

parallelized S-10 same as default S/A S/A S/A 69.20± 0.87 61.16± 0.74

no fine-tuning C-3 70.38± 2.11 7.8± 0.83 4.2± 0.55 1.6± 0.89 50.24± 5.62 54.46± 5.33

fine-tuned C-3 91.90± 0.08 10± 0 2± 0 1± 0 83.53± 0.27 86.02± 0.32

Many clusters obtained by this process have only a few spikes. Thus we set another threshold, Emin
(the minimum number of spikes in a cluster), to classify those with elements less than Emin as
multiunit activity. For this study, we set Emin = 30 to accommodate sparse firing neurons.

To reduce the false positive clusters, we compute the within-cluster similarity for each cluster C

Simin(C) =
1

|C|
∑
c∈C

 1

|C| − 1

∑
k∈C
c6=k

P (label(c) = label(k)|c, k)

 (2)

If Simin(C) is less than ϑin, it is considered multiunit activity. Heuristically, we found ϑin =
Acc− 0.1 gives the least false positive clusters on our validation set, where Acc is the classification
accuracy with ϑin as the classification threshold.

2.5 Time Complexity

The time complexity of pairwise computing similarity is Θ(n2), and that of average-linkage clustering
is Θ(n2 log n) [32]. Since computing the pairwise similarity is not iterative, one may use GPUs to
perform parallel computation at this step, so the tightest bound is Θ(n2 log n).

Parallelization To reduce the time complexity to be able to handle large numbers of spikes, we
parallelize the process by dividing the target spikes into K chunks, where each chunk contains
roughly the same number of spikes, which are then processed in parallel. After clusters are formed
for all K chunks, we take the average of spike waveforms in each cluster as the representatives and
run our algorithm on these waveforms. That is, the averaged waveform of spikes in each cluster is
fed into the network to decide whether to merge these clusters or not.

The parallelization significantly reduces the runtime to Θ
(
n2

K2 log n
)

+ Θ(T 2 log T ), where T
is the total number of clusters identified from K chunks. Since usually T � n, the complexity
is Θ

(
n2

K2 log n
)

. With parallelization, the runtime for n > 100,000 is reduced from hours to
minutes - faster than most other clustering algorithms that use K-means when n is not too large(
n < 1× 108 with K = 5, for example

)
, which has complexity O(n2) [33].

2.6 Performance Evaluation

We evaluate our algorithm on three different distributions and compare to the state-of-the-art algo-
rithms proposed in [19] and [21]. The datasets used for evaluation are simulated datasets out of
the templates reserved for testing, all 95 simulated recordings in [29], and nine selected channels
(see Table 2 in Suppl. Materials) in real neural data from [30]. Since there is only one neuron
intracellularly recorded, we only have ground truth for one cluster for each dataset in [30]. To test
the performance, we have picked nine datasets to get nine clusters and we split these clusters into
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Figure 3: Performance of different algorithms on datasets from [29]. (A) True positive clusters with
number of neurons ranging from 2-20, Mean ± SEM plotted. (B) False positive clusters, Mean ±
SEM plotted. †: The first channel that has 16 units was used for fine-tuning, so we removed that
dataset when testing our algorithm and [21]. (Better view in color.)

two, three, four clusters mixed with 10% noise spikes to generate three testing sets, with two, three,
and four neurons respectively. Note that in [34], however, they made combinations on these datasets,
while we found no actual difference with respect to performance between different combinations and
hence only tested on three splits.

We evaluate the performance based on the number of hit (true positive), false positive and missed
clusters along with F1-precision and F1-recall scores. The precision, recall and F1 score of Cr from
the results clusters and Cg from ground truth clusters are defined as

recall(Cr, Cg) =
|Cg ∩ Cr|
|Cg|

= precision(Cg, Cr) (3)

F1(Cr, Cg) =
2 · recall(Cr, Cg) · precision(Cr, Cg)

recall(Cr, Cg) + precision(Cr, Cg)
(4)

and the overall F1 score for clusters P and Q are defined as

F clus
1 (P,Q) =

1

|P|
∑
Ci∈P

max
Cj∈Q

{F1(Ci, Cj)} (5)

As suggested in [29] and [35], a selected clusterC ∈ R is counted as a hit if both max
Ci∈G

recall(C,Ci) >

50% and max
Ci∈G

precision(C,Ci) > 50%, whereR are clusters produced by sorting algorithms and G
are ground truth clusters. Clusters that are not a hit are counted as false positives. Multiunit activity is
not considered in hit calculation but is counted as false positive if it contains less than 50% of multiunit
spikes from the ground truth. To assess the quality of each cluster, we also computed the F1-precision
and F1-recall scores defined in [36], where F1-precision = F clus

1 (R,G) and F1-recall = F clus
1 (G,R).

The F1-precision measures the quality of selected clusters, while F1-recall measures the quality of
the matches to the ground truth clusters. If the selected clustersR ⊆ G, then F1-precision = 1, while
ifR ⊇ G , F1-recall= 1. In practice, we usually want the algorithms to identify as many high quality
clusters that match with the ground truth as possible and later decide whether to use them or not,
which makes F1-recall a better measure with respect to this goal.

Note that we did not employ the mutual information (MI) measure used in [34] because it allows a
high MI even if none of the selected clusters are hits as they subdivide a real cluster - this would be
bad for the goal of separating neurons. Since the code for [19] is not publicly available, we compare
our numbers to readouts from their reports. Since [19] only tested on datasets from [29] for number of
hit, missed and false-positive clusters, we only compared to [19] in section 3.3 with these measures.
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Table 2: Performance of our algorithm and [21] on real datasets from [30]. Note that the method in
[21] finds few clusters for these datasets, while our method gets a decent number of correct clusters.

Dataset with 2 Neurons (n = 2, 291)
Algorithms # of hits # of missed # of FP F1-precision F1-recall

Proposed method 2 0 1 63.11% 75.02%
Chaure et al. 2018 0 2 2 15.02% 8.67%

Dataset with 3 Neurons (n = 2, 479)
Algorithms # of hits # of missed # of FP F1-precision F1-recall

Proposed method 3 0 0 70.10% 70.10%
Chaure et al. 2018 1 2 1 74.41% 30.26%

Dataset with 4 Neurons (n = 1, 761)
Algorithms # of hits # of missed # of FP F1-precision F1-recall

Proposed method 2 2 1 60.30% 51.64%
Chaure et al. 2018 0 4 3 42.40% 32.75%

3 Results

All results shown below, except in section 3.1 where different conditions are specified, were run in
the default setting, where ϑ = 0.7, Emin = 30 and ϑin = Acc − 0.1 without parallelization, and
tests with [21] were run under default parameters published on GitHub 2.

3.1 Experiments

We ran several experiments to test our model and algorithm under different conditions, shown in
Table 1. Under each setting, five models with varying initialization of weights were trained and
clustering performance was assessed for each model.

We note that smaller δ would result in a relatively better testing accuracy if optimal ϑ was chosen out
of cross-validation. This selection, however, is unnecessary because it does not improve clustering
performance. Hence, by setting a large δ value, we can train models with similar performance for any
ϑ ∈ [0.4, 0.75] without cross-validation. In order to reduce the number of false positive clusters, we
set ϑ = 0.7 for our subsequent results. We also note that parallelizing the clustering process does
not cause any significant performance loss, but it does accelerate the clustering process as tested
with n = 10, 773. The runtime without parallelization was 2, 578.60 ± 98.58 s, while that with
parallelization was 89.00± 22.64 s. Because datasets from [29] are easier than our own simulated
datasets, the fine-tuned performance was even better than on its original training distribution.

3.2 On Simulated Data: Ours

We first ran our algorithm and that suggested in [21] on our own simulated datasets. Each recording
consists of 2-10 neurons with duration 10 minutes, and for each number of neurons, five recordings
were simulated for testing. Our model have achieved 84.33% classification accuracy on the testing set.
We obtained 192/270 hits and 28/220 false-positive clusters with F1-precision 76.60%± 16.79%
and F1-recall 54.25% ± 12.42% averaged across all 45 recordings with our algorithm, while [21]
produced 102/270 hits and 140/242 false-positive clusters with F1-precision 49.21%± 14.23% and
F1-recall 43.58%± 15.28%. The plots with detailed results are given in Fig. 2-3 in Suppl. Materials.
The figures clearly reveal that we outperform [21] if we train the models with the cell types and
recording devices of interest from scratch.

3.3 On Simulated Data: C. Pedreira et al. 2012 [29]

We also compared the performance of our algorithm to [21] and [19] on datasets from [29]. These
are datasets tested both in [21] and [19]. Note that since we have no code for [19], the results shown
in Figure 3 of [19] are eyeballed from reports in [19].

Our fine-tuned model achieved 92.11% classification accuracy on the testing set. As shown in Figure
3, our algorithm obtained a comparable number of true-positive clusters as in [19] but much less false

2Downloadable at https://github.com/csn-le/wave_clus
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positives than [19]. We note that in [19], the authors used genetic algorithms to optimize parameters
for t-SNE and DBSCAN with the simulated datasets from [29]. Also it appears that they fine-tune
parameters to optimize test performance, while we only fine-tuned our model with one out of the
total 95 recordings. Our algorithm had significantly more hits with comparably low false positives
compared to [21]. Our tests on the code of [21] had slightly fewer hits than reported in their paper
but also consistently lower false-positive clusters than in their reports.

We have also computed the F1-precision and F1-recall which are shown in Fig. 4 in Suppl. Materials.
The overall F1-precision and F1-recall of our algorithm are 81.23%± 8.68% and 81.84%± 7.97%,
respectively, and the overall F1-precision and F1-recall of the algorithm suggested in [21] are
86.46% ± 11.14% and 75.63% ± 13.84%, respectively. Note that our algorithm had a lower F1-
precision score than [21] because our algorithm produced more false positives than [21], while the
F1-recall of our algorithm is higher than [21] because we have more hits. Also note that our algorithm
produced a relatively stable F1-precision and F1-recall trade-off and less standard deviation across
all 95 simulations than [21] did. We believe that F1-recall is the more meaningful measure because
we want to have as many high quality hit neurons as possible.

These results show that our models can be readily used through fine-tuning with a small labeled
dataset skipping the tedious simulation process. As shown in section 3.2, though, training the model
with simulated data from scratch is likely to achieve much better performance.

3.4 On Real Biological Data

Lastly, we tested our algorithm and algorithm from [21] on the real data provided in [30]. Due to the
noisy nature of the real datasets and multi-electrode recordings (see Fig. 5 in Suppl. Materials for
sample clusters), our fine-tuned model was only able to get the classification accuracy of 71.38% on
the testing set. The results on the three datasets described in section 2.6 are shown in Table 2.

The method suggested in [21] had almost failed for these datasets, while our method was able to
identify a reasonable number of correct clusters and produced acceptable F1-precision and F1-recall
scores, given that the datasets are extremely hard, the classification accuracy is relatively lower, and
the multi-electrode data recorded by tetrodes and six-site probes were treated as single-channel data.

Finally, we note that [34] have very recently tested on the same datasets and would have failed these
tests as well if they had employed our hits, false positive and F-1 measures instead of the MI measures.
This is because they had barely captured any true positive neurons (due to splitting real neurons into
multiple clusters), even though they had fair MI values for their selected clusters. They also present
an automated feature selection method rather than a complete automatic spike sorting pipeline.

4 Discussion

We presented a novel supervised and fully automatic spike sorting pipeline that has achieved the
state-of-the-art performance in terms of both the number of hits, misses, and false positive neurons.
Unlike other state-of-the-art algorithms such as [19], which rely heavily on supervised training for
finding optimal parameters, our model was able to generalize its performance by fine-tuning with
only a small labeled dataset, while achieving similar to better performance. Also, our algorithm has
consistently beaten the algorithm proposed in [21] in all three different datasets.

In this study, we only trained the model to consider spikes recorded from one channel. This is true
for the templates used in our training set. In future work, we will extend the model to better handle
datasets such as [30], where neurons are simultaneously recorded by four or more channels. We
also believe our supervised pipeline will work for other clustering problems where realistic data
simulation is possible and is more straightforward than clustering itself, or where big datasets with
definite ground truth are more readily accessible.

The development of automatic and reliable spike sorting algorithm is becoming crucial as the
development of new electronic probes is greatly increasing the number of sites and resolutions
recorded [37]. Researchers are now expected to handle data recorded from thousands of sites, which
are too large to be processed manually in a supervised way [4, 38]. With the help of deep learning,
we were able to shift the burden for supervision from humans to artificial neural networks, allowing
more efficient and repeatable processing.
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